Skip to main navigation menu Skip to main content Skip to site footer

Metodologie didattiche per l'Università

No. 3 (2022): Metodologie didattiche

Si può costruire il concetto di periodicità senza il modello atomico di Bohr?

Submitted
5 July 2022
Published
06-07-2022

Abstract

The concepts of atom, element, and substance, while constituting fundamental chemical concepts, are generally tricky to understand. The not authentic comprehension of these concepts results in their not appropriate use, in the association
of the idea of periodicity almost exclusively with the description of the atomic properties and the consequent limited use of the periodic table. Based on this evidence, we investigated the possibility of presenting periodicity’s concept without introducing atomic models and electronic configurations, while referring exclusively to the classification criteria of the elements identified by Mendeleev. As a result, a module of a vertical path aimed at developing the concept of periodicity was designed. Furthermore,
we planned and realized activities based on the macroscopic properties and composition of substances, which made it possible to obtain a first simple Periodic Table of elements. The project was proposed and carried out as part of a Master’s thesis in Didactics of Chemistry. This contribution will discuss the choice of the methodology, the strategy, and the tools employed in these activities.

References

  1. V. Talanquer, J. Chem. Educ., 2015, 92 (1), 3 – 9. https://doi.org/10.1021/ed500679k.
  2. D. I. Mendeléeff, J. Chem. Soc., Trans., 1889, 55(0), 634 – 656. https://doi.org/10.1039/CT8895500634.
  3. R. Horikoshi, Chemistry Teacher International, 2021, 3(3), 239 – 255. https://doi.org/10.1515/cti-2020-0017.
  4. V. J. Traver, L. A. Leiva, V. Martí-Centelles, J. Rubio-Magnieto, J. Chem. Educ., 2021, 98(7), 2298 – 2306. https://doi.org/10.1021/acs.jchemed.1c00109.
  5. T. Rodríguez-Blas, A. de Blas, M.-J. Latorre-López, S. Picos-Nebril, J. Chem. Educ., 2021, 98(6), 2012 – 2016.
  6. https://doi.org/10.1021/acs.jchemed.1c00002.
  7. J. M. Montejo Bernardo, A. Fernández González, J. Chem. Educ., 2021, 98(3), 907 – 914. https://doi.org/10.1021/acs.jchemed.0c00553.
  8. J.-F. Álvarez-Herrero, C. Valls-Bautista, Eur. J. Sci. Math. Ed., 2021, 9(3), 80 – 91. https://doi.org/10.30935/scimath/10947.
  9. A. Rychkova, A. Korotkikh, A. Mironov, A. Smolin, N. Maksimenko, M. Kurushkin, J. Chem. Educ., 2020, 97(11), 4184 – 4188.
  10. https://doi.org/10.1021/acs.jchemed.0c00866.
  11. G.-Q. Liang, J. Zhang, Computational Materials Science, 2022, 204, 111172. https://doi.org/10.1016/j.commatsci.2021.111172.
  12. M. Kusaba, C. Liu, Y. Koyama, K. Terakura, R. Yoshida, Sci Rep, 2021, 11(1), 4780. https://doi.org/10.1038/s41598-021-81850-z.
  13. M. Schultz, S. Delaney, J. Chem. Educ., 2021, 98(12), 3921 – 3929. https://doi.org/10.1021/acs.jchemed.1c01035.
  14. A. Ramos Mejía, Educación Química, 2020, 31(1), 49 – 61. http://dx.doi.org/10.22201/fq.18708404e.2020.1.70399
  15. K. S. Taber, A. García-Franco, Journal of the Learning Sciences, 2010, 19(1), 99 – 142. https://doi.org/10.1080/10508400903452868.
  16. A. G. Harrison, D. Treagust, In Chemical Education: Towards Research-based Practice; Gilbert, J. K., De Jong, O., Justi, R., Treagust, D. F., Van Driel, J. H., Eds.; Science & Technology Education Library; Springer Netherlands: Dordrecht, 2003; pp 189 – 212. https://doi.org/10.1007/0-306-47977-X_9.
  17. G. Tsaparlis, D. Kolioulis, E. Pappa, Chem. Educ. Res. Pract., 2010, 11(2), 107 – 117. https://doi.org/10.1039/C005354F.
  18. A. H. Johnstone, J. Chem. Educ., 2010, 87(1), 22 – 29. https://doi.org/10.1021/ed800026d.
  19. I. Rodríguez-Arteche, M. M. Martínez-Aznar, J. Chem. Educ., 2016, 93(9), 1528 – 1535. https://doi.org/10.1021/acs.jchemed.5b01037.
  20. S. Brumann, U. Ohl, J. Schulz, Sustainability, 2022, 14(6), 3544. https://doi.org/10.3390/su14063544.
  21. D. M. Ferreira, F. C. Sentanin, K. N. Parra, V. M. Negrao Bonini, M. de Castro, A. C. Kasseboehmer, J. Chem. Educ., 2022, 99(2), 578 – 591.
  22. https://doi.org/10.1021/acs.jchemed.1c00287.
  23. M. Orozco, M. Boon, A. Susarrey Arce, European Journal of Engineering Education, 2022, 1 – 17. https://doi.org/10.1080/03043797.2022.2047894.
  24. C. Tsaliki, P. Papadopoulou, G. Malandrakis, P. Kariotoglou, Journal of Science Teacher Education, 2022, 1–22. https://doi.org/10.1080/1046560X.2021.2005229.
  25. K. A. Weiss, M. A. McDermott, B. Hand, Studies in Science Education, 2022, 58(1), 15 – 47. https://doi.org/10.1080/03057267.2021.1897931.
  26. A. Pilot, A. M. W. Bulte, International Journal of Science Education, 2006, 28(9), 953 – 956. https://doi.org/10.1080/09500690600702462.
  27. R. D. Anderson, Journal of Science Teacher Education, 2002, 13(1), 1 – 12. https://doi.org/10.1023/A:1015171124982.
  28. J. C. Marshall, J. B. Smart, Creative Education, 2013, 4(2), 132 – 142. https://doi.org/10.4236/ce.2013.42019.